

Your partnership for perfect

Application technologies and system

anti-corrosion and protection

SAEKAPHEN guarantees

in refineries, in petrochemical and chemical process plants high profitability

Year after year billions are lost in highly industrialised countries due to corrosion and fouling.

More than 500.000 heat exchangers, condensers and air coolers have been coated on the tube- and on the shell-side

One issue of the trade journal HYDROCARBON PROCESSING concerning the problems caused by fouling in refineries, reported that, in 1995 alone, worldwide costs on the order of \$ 4.5 billion were incurred in crude preheat trains.

SAEKAPHEN's research and development in materials intends to assist in overcoming these problems.

Where corrosion protection is concerned, **SAEKAPHEN** sets new standards.

For more than 50 years coating materials and application technologies have been developed, which provide a reliable corrosion protection and prevent fouling and have consequently become world famous under the name **SAEKAPHEN**.

SAEKAPHEN know-how

if perfect corrosion protection is required from practical experience

This is SAEKAPHEN

Definition

The **SAEKAPHEN** coating is produced from complex mixtures of liquid thermosetting coatings and is applied to the equipments using flooding and spraying technologies.

It offers two coating technologies:

- Heat Cured Coating
- Cold Cured Coating

SAEKAPHEN product mix

heat cured material

SAEKAPHEN Material type	colour	surface	dry film thickness µ	density g/m ³	solid vol- ume ltr./ 100 kg	hardness (König) Imp./sec.	resistance	field of application
SAEKAPHEN Si 14 E	dark-green	hydrophob, smooth	200	1,39	27,41	190	high acid to slightly alkaline, salt solutions, cooling water. gases, organic liquids	heat exchangers, air coolers, condensers, evaporators, tanks
SAEKAPHEN Si 14 EG	red-brown	hydrophob, smooth	250	1,30	29,32	134	water vapour diffusion, slightly acid a. alkaline liquids and vapour	heat exchangers, condensers, condensate containers, thermal degasers
SAEKAPHEN Si 17 E	red-brown	hydrophob, smooth	200	1,44	30,13	143	liquid or gaseous KW, salt solutions, oils, acid to slightly akaline mediums to PH8	inside coating of tanks for storage of flammable liquids, class of isk AI/AII and B, alphatic hydrocarbon
SAEKAPHEN Si 57 E	red-brown	hydrophob, smooth	200	1,16	30,10	200	high alkaline to acid, all cooling waters incl. brackish- a. sea-water	heat exchangers, condensers, evaporators, vessels, Water treatment plants
SAEKAPHEN Si 57 E-HC	black	Satin- finished	200	1,20	30,10	200	high alkaline to acid, all cooling waters incl. brackish- a. sea-water	heat exchangers, condensers, evaporators where a higher heat conductivity is required
SAEKAPHEN Si 57 EG	grey-olive	matte	250	1,24	29,52	120	water vapour diffusion in, alkaline to low acid liquids	condensers, condensate, containers, degasers a. boilers

Chemical Resistance of SAEKAPHEN Coatings vs. conventional Coatings

The chemical resistance was tested in a laboratory test by dipping the coated panel in a SAEKAPHEN-specific unique solvent mixture containing i.e. chloro-acetic acid and methylenen chroride

Two heat exchangers with welded tubes

without SAEKAPHEN

with **SAEKAPHEN**

Practical example 2 parallel operating heat exchangers, operating time 2 years without cleaning.

Basic Resistance Chart

		SAEKAPHEN Materials
Oxides		
hydrogen peroxide	oxidizing	Si 14E
carbon monoxide		Si 14E/EG
carbon dioxide, carbonic acid		Si 14E/EG
sulphur dioxide, sulphurous oxide		Si 14E
sulphur trioxide		Si 14E
silicon dioxide		Si 14E
Superoxide		Si 14E
Acids		
hydrochloric acid, chloric acid gas		Si 14E
nitric acid	oxidizing	Si 14E
hydrogen sulphide, hyrosulphide		Si 14E
sulphuric acid		Si 14E
ethanoic acid, acetic acid		Si 14E

Alkaline Solutions

calcium hydrate, hydroxide	Si 57E/EG
kalihydrat, caustic potash solution	Si 57E/EG
sodium hydroxide, caustic soda hydrated	Si 57E/EG
ammonia	Si 57E/EG

Sulphates

calcium sulphate, calc.sul. Hemihydrated	Si 14E/EG	Si 57E/EG
copper sulphate	Si 14E	

sodium sulphate, Glauber's salt Si 14E/EG

Carbonates

calcium carbonate, calcareous	Si 14E	Si 57E
potassium carbonate	Si 14E	Si 57E
sodium carbonate	Si 14E/EG	Si 57E/EG

Si 14E/EG	Si 57E
Si 14E/EG	Si 57E
Si 14E	Si 57E/EG
Si 14E	Si 57E/EG
Si 14E/EG	
Si 14E/EG	
Si 14E	Si 57E
Si 14E/EG	
Si 14E/EG	
Si 14E/EG	Si 57E/EG
	Si 14E/EG Si 14E Si 14E/EG Si 14E/EG Si 14E Si 14E Si 14E Si 14E/EG Si 14E/EG

SAEKAPHEN product mix cold cured material

SAEKAPHEN Material type	colour	surface	dry film thickness µ	density g/m³	solid vol- ume ltr./ 100 kg	hardness (acc.König* ShoreD**) Imp./sec.	resistance	field of application
SAEKAPHEN HR 60 extra G	green, red, grey	smooth, glossy	400-500	1,50	60,3	120*	high alkaline to acid mediums, brackish, sea a. deionized water as well as inorgranic salt solutions	tanks, silos, filters, vessels
SAEKAPHEN HR 60 extra TG	red, grey red-brown	matte	300-350	1,40	33,1	100*	sightly acid to alkaline aqueous mediums water to 100°C a. water vapour diffusion	desalization plants, condensation tanks, process water tanks, metal pipelines
SAEKAPHEN K 80 LS	red-brown	satin- finished	400- max. 800	1,40	66,4		acids to high alkaline aqueous, mediums water to 100°C a. water vapour diffusion	water tanks in power stations, turbine condensers, heat exchangers, coolers evaporating a. cooling water pipelines
SAEKALINE	red-brown, white	smooth, glossy	mind. 700	1,55	64		water to 100°C a. temperature drop to the surface, temperature difference up to 80°C	boilers a. other water heaters for drinking nondrinking water, KTW recommen- dation a. all ranges of cold a. heat water
SAEKA-Flake 900	beige	smooth	1000	1,28		87**	aggressive media of chemical industry, high acid ranges a high temperatures	flue gas desulfurizing plants, tanks, pipelines, tanks, vessels, pipes
SAEKA-Flake 900 Black	black-grey	smooth	1000	1,32		87**	sightly alkaline to high acid mediums, sea-water, inorganic salt solutions, flue gas, electrostatic derivation ability	storage tanks, containers, flue gas channels,disulfurizing plants,process tanks, washing towers, gas purifying plants
SAEKATAR D extra	black, red-brown	matte	mind. 500	1,5	79,5	74*	good chemical resistance, high temperature toad, higher water vapour diffusion	power stations, nuclear power stations, cooling water pipelines, tanks

SAEKAPHEN-coated equipment has been widely used for many years by industries such as refineries, fertilizer, petrochemical and chemical plants, particularly refrigeration, crude oil distillation and water treatment.

This is what SAEKAPHEN can do

Application

prevents corrosion

prevents fouling, allowing a considerably

lower fouling factor when designing new heat exchangers

is resistant to water vapour and to extreme temperature fluctuations

has a long life at temperatures ranging from -20°C to +220°C

is non-conductive

SAEKAPHEN

the perfect alternative for protection against corrosion

Coating Technology

Heat Exchanger to be SAEKAPHEN Treated Require Specific Constructional and Surface Conditions

In accordance with

DIN EN 14879-1

Some typical constructions of heat exchanger.

U-Tube bundle

Floating-Heat Exchanger

Tubular-Heat Exchanger

Air cooler

Constructional conditions for SAEKAPHEN coating on the tube side of tube bundles in accordance with DIN EN 14879-1

of the tubes ends
welded / expanded on the
tube sheets from optimezed
best solution (1)
to poorest solution (5)

Best solution: Welded tubes with rounded tube edges on the tube sheets in accordance with DIN EN 14879-1 (main part of coated heat exchanger in Europe)

Alternative solution: Jut put tube ends, seal expanded tubes, rounded tube edges and seal welding for protection from capillary faults in accordance with DIN EN 14879-1

Insignificant solution: Jut out tube ends rounded tube edges seal expanded without seal welding. Capillary faults between tube sheets and the shell side of the tube within the boring without recommendation

Poor solution

Seal expanded tubes, jut out tube ends not rounded, without seal welding. Faulty quality of coating

Worst solution has to be treated ahead

Seal expanded tubes, long jut out tube ends not rounded tube,
edges (sharp edges), and no seal welding. Faulty quality of coating

Surface preparation by sand blasting

Before starting the surface preparation by sandblasting the construction has to be inspected in accordance with the DIN guidelines, especially the DIN EN 14879-1.

The internal surface of the tubes shall be sandblasted tube by tube either by hand or with an automatic sandblasting machine. The grade shall be Sa 3 with a roughness of 40 - 60 micrometer guaranteeing high adhesion of the SAEKAPHEN coating.

sand blasting, manual and mechanical

Coating flooding technology The Know how of SAEKAPHEN

SAEKAPHEN - MOVIE

Baking process

The units to be protected have to be baked after each layer of the heat cured coating.

Prebaking temperature: 120 - 150 °C, final baking: 200 - 220 °C.

testing equipment

Film-Thikness Measurement

testing equipment

Pinhole or Sparkling Test

Dependence of heat transfer on operating time

A practical example

The heat transfer of a new uncoated heat exchanger amounted to 800 W/mK. After an operating of approx. 2 months, the heat transfer was reduced to 600 W/mK as a result of increasing fouling and incrustation.

After approx. 19 months of operation and interim high-pressure cleaning, the heat transfer was reduced to approx. 350 W/mK.

The heat exchanger was then decommissioned.

SAEKAPHEN - the Alternative

A heat exchanger coated with **SAEKAPHEN**, operated at the same location and under the same conditions, has been operating for approx. 3 years without any cleaning and with a constant heat transfer of approx. 625 W/mK.

This heat transfer corresponds to the heat transfer of an uncoated tube after approx. 2 months of operation.

SAEKAPHEN

Economic Benefits

- the optimum solution against corrosion

Application

Capital costs are reduced due to the usage of simple carbon steel

Operational costs are reduced as fouling/scaling on the tube surfaces of the heat exchanger are prevented.

It will prolong the life of the units coated to average durability of 10 to 15 years.

SAEKAPHEN Coating Pricing Range

Total Surface Area	Price Range per sqm					
Below 10 sqm	€ 500 to € 218					
10 sqm to 30 sqm	€ 218 to € 131					
Above 30 sqm	€ 131 to € 60					

tef. Nor TCP/OXC	/E2352		HEAT	EXCH	ANGER	Page	4/14	Rev	0		
sign Pressure, internal sign pressure, external ix Design Temperature		/2004	<u>,</u>					·—-			
sign Pressure, internal sign pressure, external ix Design Temperature	ell										
sign pressure, external ix Design Temperature											
sign pressure, external ix Design Temperature		1	$\overline{}$	S	heil		Tube				
x Design Temperature		berg			3	8					
		berg			-V						
Design Temperature		*C		- 2	900	200					
Min Design Temperature					5	5					
Test Pressure (hydrostatic)					1.5	9.0					
Stress factor, design			1	Acc	to code	Acc. to code					
Stress factor, test			+	Acc	to acode	Acc. to code					
. Passes per shell		1				2					
mosion allowance		mm	T	1	.6	1.6					
mosive component in fi		% 100									
nt efficiency					00	100					
Radiographic examination					o code	Acc. to code					
Nozzie Loeds				See	page 9	See page 9					
her Loade											
Pressure design to			AS		. 1/TEMA CLB	ASME VIII DIV. 1 / TEMACL.8					
Material to					ME	ASME					
Heat treatment					o code	Acc. to code					
Non destructive testing				Acc. (o code	Acc. to code					
ot-blasting / Painting			-}		3) (<u> </u>					
riace Treatment "	<u> </u>				3)		SAKAPH	EN.			
idding/Lining											
nstruction tolerances					Acc. to TEMA / BC Sta						
ne of welded joints		Refer to BC Standard 14-133-01 and page 10 of this specification									
Rating of welded joints			Acc. to code								
pport type		<u> </u>									
							1		16		
	mm										
	mm		4								
se of shell cover											
	on type diameter nominal diameter well thickness of shell cover cover thickness	diameter mm nominal diameter mm wall thickness mm of shall cover	diameter mm nominal diameter mm wall thickness mm of shell cover	diameter mm 219 nominal diameter mm 200 wall thickness mm 4 of shell cover cover thickness mm 21	diameter mm 219 56 nominel diameter mm 200 57 wall thickness mm 4 58 of shell cover 59 59 cover thickness mm 21 60	diameter mm 219 56 -Cross baffles nominal diameter mm 200 57 No of baffles wall thickness mm 4 58 Saffles type of shell cover 59 Cut (Verticat/from the cover thickness mm 21 60 Cut Aveny Baffle C	diameter	diameter mm 219 56 -Cross baffles nominal diameter mm 200 57 No of baffles wall thickness mm 4 58 Baffles type of shell cover 59 Cut (Verticat/horizontal)	districtor rmm 219 56 - Cross baffles Y. nominal diameter mm 200 57 No of baffles 1.3 wall thickness mm 4 58 Baffles type 3egr of shall cover 59 Cut (Verticat/horizontal) Horiz cover thickness mm 21 60 Cut Avers Baffle Segment %		

BASF Petronas Chemicals specify SAEKAPHEN

			of shell cover	1 1	59	_	Cirt (Vertical/horizontal)	1 1 .	Horizontal		_	
12 .	Hadiographic examination	30 She	Cover thickness	mm 2)	3C. 10	coge	Cut Away Baffie Segment	%	17.5 ACC.	to coae		
-	Nozzie Loeds			S	66 PE	ige 9				page 9		
	Other Loads		T							<u> </u>	7	
15	Pressure design to			ASME VIII	DIV.	1/TE	WA CLB	ASM	E VIII DI	V. 1/TE	MACLB	
16	Material to				ASA	<i>IE</i>			A	SME		
17	Heat treatment			A	ec. to	code		Acc. to cod				
18	Non destructive testing			Ac		Acc. to code						
19	Shot-blasting / Painting				3)			1				
20	Surface Treatment			3)				SAKAPHEN-				
21	Cladding/Lining				_							
22	Construction tolerances			Acc. to TEMA / BC Standard 14-710-01								
23 🗍	Type of welded joints		Refer to BC Standard 14-133-01 and page 10 of this specification									
24	Rating of welded joints		Acc. to code									
25	Support type											
26	Shell diameter	mm	21	9 56	Γ		Cross baffles				Yes	
27	Shell nominal diameter	mm	20	0 57	$\Gamma \Gamma$		to of baffles				13	
28	Shell wall thickness	mm	4	58	Γ	_ 6	Saffles type				Segmenta	
7a	Type of shall cover			50	T -		he Warting Morin		- 1 -		Horizontal	

BASF Aktiengesellschaft BASF Bldg: U150 Specification Sheet Tubular - Heat Exchanger Job-Nr.: Bau Technisches Blatt Rohrbündel - Wärmeaustauscher Egpt-No. W204C/D Pos.-Nr. Continuation Page 5 Fortsetzung Surface Treatment, Surface Protection / Oberflächenbehandlung, Korrosionsschutz X Primer for carbon steel parts acc. to WN 33-001-1 X Austenitic stainless steel acc. to WN 82-043 Grundbeschicht, f. Teile aus C-Stahl n. Nichtrostende, austenit. Stähle n. figure 6.2 Stove enameling acc. to Einbrennlackierung nach DIN 28053 / X Final coat acc. to WN 33-001-1 DIN 28054 / Gesamtbeschichtung nach DIN 28055 figure 7.2.3 Glass lining acc. to DIN 28063 Emaillierung nach Grinding and polishing acc. to WN 7-044 Hot - dip - galvanizing Schleifen und Polieren nach Feuerverzinkung max. roughness peak - to - valley height acc. to DIN 50976 Zulässige größte Rautiefe nach (für Bauteile) allowed Rmax DIN 267-10 (for bolts / nu and R max. X Lining acc. to DIN 28051 / DIN 28053 / DIN 28055 Material Säkaphen Si57E Auskleidung nach Notes / Bemerkungen X Selection and sizing of wall thicknesses by manufacturer. The proposal shall include the chosen wall Auswahl und Auslegung der Wanddicken erfolgen durch den Hersteller. Die gewählten Wand dicken sind im Angebot zu nennen. The specified wall thicknesses are minimum values. No additional loads are considered. In case the structural and / or stress calculations reveal the need for increased wall thicknesses locally, bracing ribs and / or pads, these are part of contracted performance / delivery. Die angegebenen Wanddicken sind Mindestwerte. Sie berücksichtigen keine Zusatzlasten. Ergeben sich aus Statik und / oder Festigkeitsberechnung örtlich dickere Wände, Verstärkungs bleche und / oder -ringe, gehören diese zum Leistungs- und Lieferumfang. | Heavier wall thickness and / or bracing pads necessary because of external pressure are part of contracted performance / delivery. Werden für äußeren Überdruck dickere Wände und / oder Versteifungsringe notwendig, gehören diese zum Leistungs- und Lieferumfang. Spare gaskets are within scope of supply for the following flange connections: Reservedichtungen sind im Lieferumfang für folgende Flanschverbindungen enthalten:

circulation water condenser, ordered by Fertilizer Plant, Kuwait

some tube bundles (shell- and tube-side coated)

turbine condenser (tube-side coated), ordered by BP Deutschland, Germany

condenser for power plant (ordered by Siemens AG; before coated)

condenser after tube-side coating

condenser ready for shipment

air cooler (tube-side coated), odered by Caltex, Germany

shell-side coated tubes (tube by tube)

assembling of shell-side coated tubes and tube sheets

shell-side coating of U-tube bundle

The SAEKAPHEN heat cured coating technology

The special know how with long experience - of SAEKAPHEN does not only apply to the coating of heat exchanger, tube bundle, condenser and air cooler but also to tanks, vessels and road- or railway containers.

Size of Heat exchanger to be coated with SAEKAPHEN heatcured material up to:

4,0 m in diameter, 16,0 m in length

Heatcured coating of longer units requires a special movable polymerisation oven, available only at the workshop of the belgian licencee.

another road container coated

heat cured coating Si 14E of railway container

heat cured coating Si 14E of a storage tank

storage tank internal coated with SI14E

high pressure coated with SI14E

internal heat cured coating Si 14E of a channel

internal heat cured coating Si 14E of drinking water tanks

SAEKAPHEN - leading manufacturer of special coating **Material and applicator of special coating technologies**

Heat cured coatings

Cold cured coatings

SAEKAPHEN - leading manufacturer of special coating materials and applicator of special coating technologies

Customer profile

National/international engineering companies

End customers: refineries, fertilizer plants, chemical and petrochemical industry power plants, pharmaceutical industry, sugar industry, breweries, wine producers, and the food and beverage industry.

Equipment manufacturers: producers of heat exchangers, chemical equipment, tanks and silos, pipelines, vessels, road and rail-road containers

Range of coatings:

Heat cured coating of heat exchanger with expanded or welded tubes, U-tube bundles, condensers, tube sheets, air coolers, preheaters, storage tanks, vessels, road and railroad containers, hot-water boilers, turbine motors and pipelines.

Cold cured coatings of storage tanks, transportation vessels, containers, silos, boilers, filters, pipelines, chimney components used for flue gas desulphurisation

SAEKAPHEN - Offering competence and experience in anti-corrosion protection. Optimum product quality and service. Setting the standard for process and operational reliability.

coating Workshop in Damman, K.S.A of our Licensee Al-Qhatani

coating Workshop in TELUK KALONG, Malaysia of our Licensee UMW SAEKAPHEN COATING SDN BHD

coating Workshop in Gwangyang-City, Korea of our Licensee Saekaphen Korea Co., Ltd.

SAEKAPHEN LICENSEES

World-wide licensees

SOUTH-KOREA, Gwangyang

USA, Texas

DENMARK, Hvidovre

AUSTRIA, Kleinneusiedl

SPAIN, Cantabria

BELGIUM, Trazegnis

FRANCE, St. André

U.K, West Yorkshire

POLAND, Gliwice

Dammam

ITALY, Milano

PORTUGAL, Lisboa

USA, Wisconsin

MALAYSIA, Kuala Lumpur

KINGDOM OF SAUDI ARABIA,

New Licensee for Oman

- AITS
- Arabian Industries Technical Support L.L.C.
- P. O. Box 51,
- P. C. 124, Al-Rusayl
- Muscat/ Sultanate of Oman
- Mr.Anindya Chatterjee, Business Unit Head
- GSM # 97164362, e-mail : anindyac@arabian-industries.net

SÄKAPHEN GmbH

Bottroper Straße 275

Postfach 620

D-45964 Gladbeck, Germany

Telephone: +49 (2043) 947-0

Telefax: +49 (2043) 947-130

http://www.saekaphen.de

E-Mail: info@saekaphen.de

Thank you