

HEMPEL

FIRE PROTECTION

Intumescent Coatings for advanced Passive Fire Protection

Erik van Schaijk Research Engineer Group R&D – Fire Protection Hempel A/S

TATAT!

Content

- Fire protection by intumescent coatings
- Specification principles
- Development and testing of intumescent products
- Global approvals
- Reliability and durability of intumescent coatings
- Approval of paint systems for fire protection

HEMPEL HEMPACORE

Introduction to fire & fire protection

HEMPEL

Types of fires

There are 3 main types of fire

Cellulosic fires

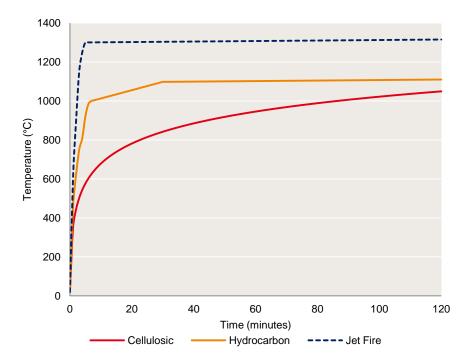
- Occur when burning wood, textiles and paper etc.
- Civil construction

Hydrocarbon fires

- Occur when burning oil or gas
- O&G or petrochemical industry

Jet fires

- Occur when burning compressed oil and gas
- O&G or petrochemical industry



Types of fires

Temperature development of different fire types

- Cellulosic fires
- ISO 834
- T = 20 + 345 * log (8 * t + 1)
- Hydrocarbon fires
- UL1709/BS476
- T = 20 + 1080 * (1 0.325 * e^{-0,167 * t} 0.675 * e^{-2,5 * t})
- Jet fires
- ISO 22899
- Estimated temperature curve

Jet Fire Resistance (ISO22899-1)

- 1500x1500mm 10mm thick steel box with 250mm deep, 20mm thick flange (~500kg)
- Jet impinges on flange 375mm from base
- 0,3kg/s⁻¹ ±0,05 kg propane
- 260m/s⁻¹ velocity at impact area
- First thermocouple to 400°C = FAILURE!
 - Requires Epoxy intumescents

Active and passive fire protection


Fire protection of steel can be done with two methods:

Active fire protection

- Methods that require a certain amount of motion and response in order to react to put out the fire
- E.g. sprinkler systems, fire extinguisher systems

Passive fire protection

- Methods that contain, minimize the impact, or slow the spread of the fire
- Contrary to active fire protection, the passive type does not need a response before reacting to the fire
- E.g. intumescent coatings, boards, fire walls, foams

Cellulosic and Hydrocarbon intumescent

Cellulosic Intumescent	Hydrocarbon & Jet Fire Intumescent			
Also called Thin film intumescent	Also called Thick film intumescent			
Normally Acrylic based	Normally Epoxy based			
Water or solvent based	Solvent free			
1 component	2 component			
Application by Airless Spray	Application by Plural Component Spray followed by trowelling			
White	Grey/Blue/Beige			
~0.2–5 mm dry film thickness	~2-40 mm dry film thickness			
~40-60x expansion	~4-10x expansion			
	HEMPEL			

Normal airless and Plural Component spray equipment

HEMPEL HEMPACORE

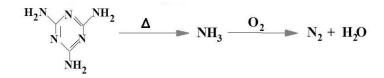
Intumescent coatings for cellulosic fires

13

Basic concept of intumescent

- Intumescent is a substance which swells as a result of heat exposure, thus increasing in volume, and decreasing in density.
- Expansion is normally around 40-60 times the applied DFT
- Char of low thermal conductivity that reduces heat transfer to substrate
- Thermal insulation of substrate

Reactions during intumescence


- Softening of binder (Acrylic resin)
- Acid catalyst (Ammonium polyphosphate)

 $(NH_4PO_3)_n \xrightarrow{>300^{\circ}C} (HPO_3)_n \xrightarrow{>550^{\circ}C} \frac{n}{4} P_4O_{10}$

• Carbon source (Pentaerithritol)

$$(\text{HPO}_3)_n + C_x(\text{H}_2\text{O})_m \longrightarrow \left["\text{C"}\right]_x + (\text{HPO}_3)_n \text{ m H}_2\text{O}$$

Blowing agent (Melamine)

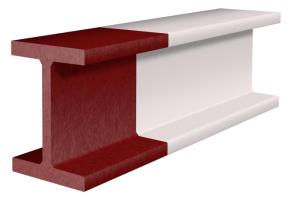
Specification of fire protective coatings

Specification principles

Specifications of thickness of intumescent vary depending on the substrate and steel profile

- Factors influencing the specification
- Type of section (open/ closed/cellular profile)
- Massivity of the steel (Hp/A)
- Exposure (i.e. 3 sided, 4 sided exposure)
- Fire Rating FR (30/ 60/ 90/ 120 min)
- Critical temperature (CT)

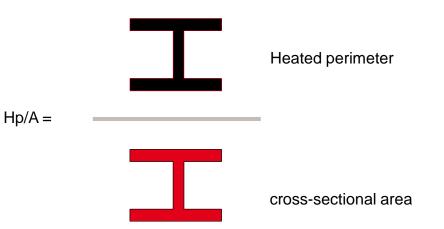
Hp/A concept


High Hp/A value

- Low mass of steel
- Fast heating
- Higher dry film thickness of intumescent

Low Hp/A value

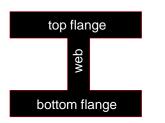
- High mass of steel
- Slow heating
- Lower dry film thickness of intumescent



Hp/A concept

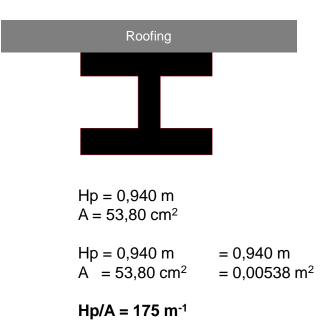
Hp/A factor

- Synonyms: A/V ; Massivity ; Section Factor
- Hp/A is a calculated numerical value [m-1]
- Hp = Heated Perimeter of the steel [m]
- A = Cross-sectional Area of the steel [m2]



Hp/A calculation

4 side-exposure



Hp = 1,140 mA = 53,80 cm²

 $\begin{array}{ll} Hp = 1,140 \mbox{ m} & = 1,140 \mbox{ m} \\ A & = 53,80 \mbox{ cm}^2 & = 0,00538 \mbox{ m}^2 \end{array}$

 $Hp/A = 212 \text{ m}^{-1}$

3 side-exposure

Loading tables – 4 sided Columns

Table 11 Required thickness of HEMPACORE ONE 43600 or HEMPACORE ONE FD 43601 (mm) for a fire resistance period of 120 minutes

Section factor	Design temperature (°C)								
(m ⁻¹)	350	400	450	500	550	600	650	700	750
70	-	-	3.146	2.248	1.740	1.175	1.094	0.994	0.811
75	-	-	3.243	2.360	1.852	1.277	1.174	1.072	0.883
80	- 1	-	3.340	2.471	1.965	1.379	1.253	1.149	0.955
85	-	-	3.436	2.583	2.078	1.481	1.333	1.227	1.028
90	-	-	3.533	2.694	2.190	1.583	1.413	1.304	1.100
95	-	-	3.630	2.806	2.303	1.685	1.493	1.382	1.172
100	-	-	3.727	2.917	2.416	1.787	1.572	1.459	1.244
105	-	-	3.823	3.029	2.525	1.889	1.652	1.537	1.316
110	-	-	3.955	3.140	2.632	1.992	1.732	1.614	1.389
115	-	-	4.100	3.251	2.740	2.094	1.812	1.692	1.461
120	-	-	4.245	3.363	2.847	2.196	1.891	1.769	1.533
125	-	-	4.390	3.474	2.955	2.298	1.971	1.847	1.605
130	-	-	4.535	3.586	3.062	2.400	2.051	1.924	1.678
135	-	-	4.680	3.697				.002	1.750
140	-	-	4.825	3.809	R90 ((550°C) · ·	1.360 mm	.079	1.822
145	-	-	4.971	3.940		(.157	1.894
150	-	-	5.116	4.082	3.492	2.873	2.370	2.234	1.966
155	1	-	5.261	4.224	3.599	2,994	2,449	2.312	2 0 3 9

HEMPEL HEMPACORE

FIRE PROTECTION

Hempel's R&D Fire Protection

-

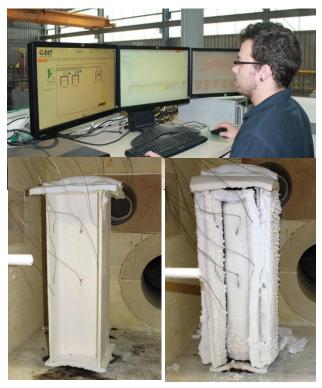
Focussed investment to support Hempel's growth plans

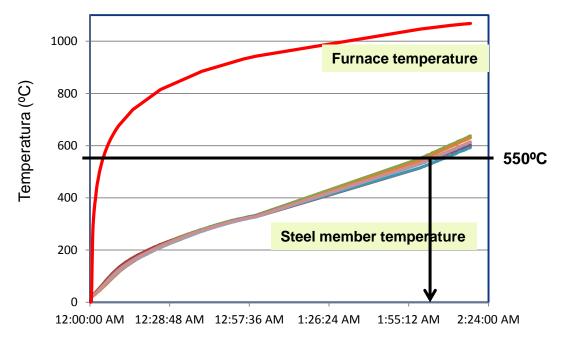
- Increasing legislation in fire protection
- Intumescent coatings are essential part of the protection system
- In the past, Hempel has had licensing agreements with other manufacturers
- The development of our own products is part of the growth strategy in Industrial protection
- State-of-the art facilities
- Highly qualified experts

MPF

HEMPEL IR&D Centre in Polinya, Barcelona

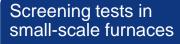
New R&D Laboratory for Fire Protection





Standardized testing for fire resistance

Tiempo



Internal testing

External testing

Plates 30x20 cm

• Formulation adjustment

Indicative tests in medium scale furnaces

Sections 1 meter

- DFT range
- Massivity range

Official fire tests at third party institute

According to international standards

Global approvals for cellulosic products

BS 476-21

Middle East, UK, APAC

EN 13381-8

• UL 263

- GB 14907
- GOST 53295
- AS1530.4

America, Middle East China Rusia

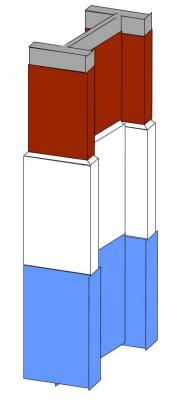
Europe

Australia

Other

Singapore BS8202

Korea – KS1227



Specification of Intumescent coating systems

Fire protection coating system

Primer

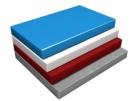
- Adhesion to substrate in cold state
- Anticorrosion protection
- Stickability of intumescent char formed during fire exposure

Intumescent

- Provides thermal insulation in fire exposure
- Contribution to anticorrosion by barrier effect

Top-coat

- Aesthetic function
- Sealer function to prevent early degradation and inactivation of intumescent layer
- Weathering resistance to end-use conditions

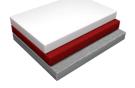

Typical intumescent coating systems

Medium/High corrosion category - Exterior areas up to C4 (ISO12944)

- Epoxy primer with Zinc phosphate 1 x 100µm
- Intumescent Coating
- Polyuretane topcoat

1 x 100μm HEMPADUR 15570 1 x acc spec. HEMPACORE ONE 43600 1 x 100μm HEMPATHANE 55610

1 x acc spec. HEMPACORE ONE 43600


Low/Medium corrosion category – Interior/exterior areas up to C3 (ISO12944)

Epoxy primer with Zinc phosphate 1 x 80µm HEMPADUR 15570
 Intumescent Coating 1 x acc spec. HEMPACORE ONE 43600
 Acrylic Topcoat 1 x 50µm HEMPATEX ENAMEL 56360

Very low corrosion category - Interior areas up to C2 – indoor (ISO12944)

- Epoxy primer with Zinc phosphate 1 x 80µm
 HEMPADUR 15570
- Intumescent Coating

Extension of Assessment report to systems

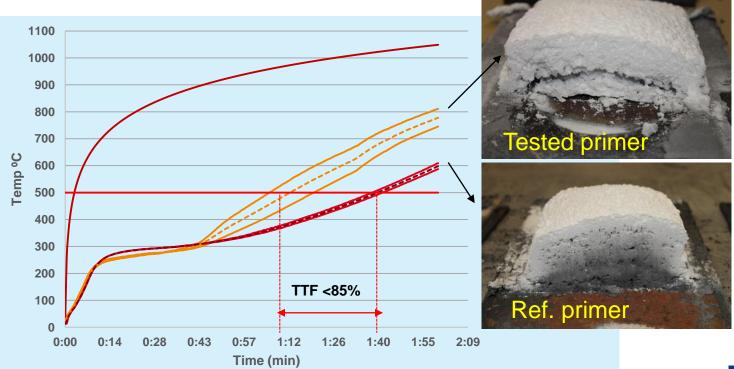
- Classification of Resistance to Fire by Third party evaluation FR 30, 60, 90, 120 minutes
- EN, BS, UL standards
- Fire testing of <u>1 paint system</u>: primer/intumescent with or without topcoat
- BS8202
- ETAG18-2 European Technical Approval Guideline EOTA (since year 2008)
- Work in progress to new standard prEN16623

ETA – European Technical Assessment and CE marking

- According to ETAG018 Part 2 Technical Guideline
- Issued by Notified Body member of EOTA
- Fitness for end-use:
 - Resistance to fire (EN13381-8) Loading tables
 - Reaction to fire (EN13501-1) Smoke generation and flame spread
 - Primer compatibility Substrates
 - Durability of systems in weathering exposure conditions
 - Slow heating exposure
 - Identification (fingerprint) of primers and topcoats

Guidelines for compatibility testing of primers only in Europe - ETAG18-2

• Only 1 primer from each primer family is subjected to testing (separate for each intumescent product)


Generic Primer Type	Maximum Approved Tested Thick- ness + (%)
Acrylic	50
Short/medium oil alkyd	50
Two component epoxy	50
Zinc rich epoxy (containing about 80% by mass of metallic zinc powder)	50
zinc silicate	50

- Substrates other than carbon steel must be tested with relevant primer
- Aim is to prove similar protection time than ref. primer used in initial type testing
- Fire tests at external lab on 2 panels per primer 1000 microns DFT intumescent
- Multi-coat primer systems of more than one primer or more than one coat of the same primer shall be tested as one primer system
- A primer on top of a temporary blast primer (pre-construction) is not considered a multi-coat system

Compatibility testing of primers – ETAG18-2

Additional internal testing of primers

Good stickability steel-primer and primer-intumescent

Bad stickability: lack of adhesion steel-primer causing char detachment

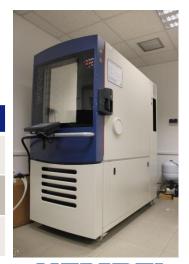
Exposure conditions – topcoat approval

Intumescent coatings are sensitive to humidity

- Topcoat act as sealer to prevent moisture penetration and ensure long-life
- Testing in different end-use conditions is necessary

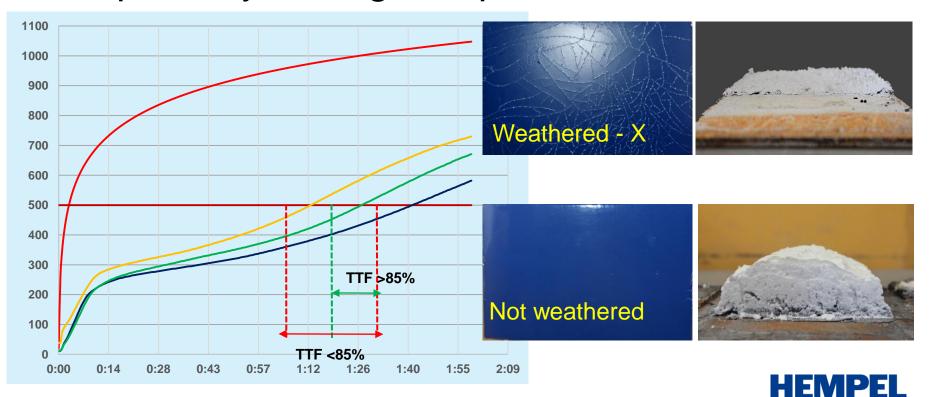
• ETAG describes the following environmental conditions:

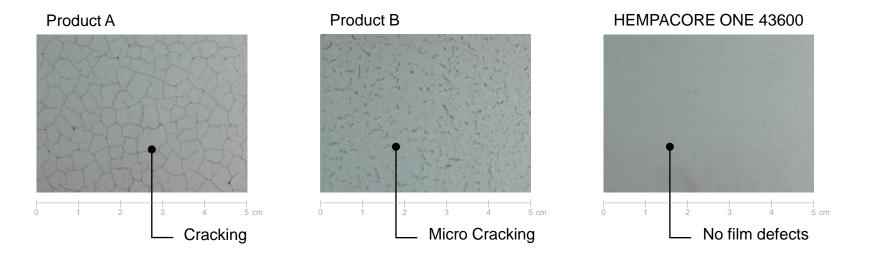
Exposure		
Туре Х	Exterior	
Туре Ү	Semi exposed	
Type Z1	Interior high humidity	
Type Z2	Interior	


Increased reliability & durability

Exposure tests according to ETAG-018 Type X-conditions (outdoor conditions)

- Phase 1: Spray QUV (112 cycles in 28 days) of:
- 5 hours of dry UV exposure at 50°C (± 3°C) with relative air humidity of 10% (± 5%)
- 1 hour of water spray at 20°C (± 3°C)
- Phase 2: <u>Climatic chamber</u> (2 cycles as described in the below table where the coating is exposed to extreme temperature and humidity changes)


Day	6 hours	6 hours	6 hours	6 hours
1. + 2.	20°C ± 3°C	70°C ± 3°C	20°C ± 3°C	70°C ± 3°C
	95% ± 5% rh	20% ± 5% rh	95% ± 5% rh	20% ± 5% rh
3. + 4.	$20^{\circ}C \pm 3^{\circ}C$	$30^{\circ}C \pm 3^{\circ}C$	40°C ± 3°C	30°C ± 3°C
	$95\% \pm 5\% \text{ rh}$	$40\% \pm 5\%$ rh	95% ± 5% rh	40% ± 5% rh
5. + 6 +7.	$-20^{\circ}C \pm {}^{\circ}C$	40°C ± 3°C 95% ± 5% rh	$-20^{\circ}C \pm 3^{\circ}C$	40°C ± 3°C 95% ± 5% rh


Compatibility testing of topcoats – ETAG18-2

Increased reliability & durability

Results show superior durability under exterior conditions

HEMPEL

Varning - Ultraviolet

-

-

1

HEMPACORE PASSIVE

Ξ

F

HEMPEL HEMPACORE

FIRE PROTECTION

Quality control

- Factory Production Control production only in approved and certified factories
- Quality control of raw materials and finished product
- Control of changes
- Process controls
- Initial audit
- Continuous surveillance
- Voluntary adoption of "Guidance to a quality control fire test regime for intumescent coatings" prepared by the Intumescent Coatings Technical Committee (ICTC) of CEPE

Quality assurance

Testing required for

- Changes in production equipment/processes
- Change of formulation
- Change in raw material supply

Probability of effect on fire protection performance	Fire test level	Test to be performed
Certain	5	Loaded beam at maximum DFT according to EN 13381-8 at accredited laboratory
High	4	1 m specimens according to EN 13381-8 at accredited laboratory
Moderate	3	1 m specimens according to EN 13381-8 internally
Low	2	Insulating efficiency test according to Laboratory Instruction RD-142
Very low	1	Char expansion test according to Laboratory Instruction RD-141

Wrap-up

•PFP of structural steel is a matter of safety

 Reliability and Durability of fire resistance coatings are essential – Only one chance to perform during lifetime of the building

•Third party certifications – Quality assurance

Additional stringent internal test protocols

Thank you...

