Automated Weld Overlay Presentation

SULZER CONFIDENTIAL

Andrew Petticrew, 2017
Weld overlay -
The smart way to extend tower lifetime and keep your shutdowns under control
Focus of presentation

This presentation will highlight following topics:

- Corrosion issues faced in refineries
- Corrosion protection using weld overlay
 - Technology
 - Process
 - Quality
- Case study where automated weld overlay has been applied
Modern corrosion challenges

Material degradation in assets

NACE, the professional body for the corrosion control industry, estimates that the total annual cost of the effects of corrosion in the oil and gas production industry is **1.372 billion USD**.

It's common to see increased corrosion levels and shell material loss in the below assets:

- Vacuum columns
- Sulphur recovery units
- CO2 absorbers
- Reactors
- LNG columns
- Decoking drums
Modern corrosion challenges

Operational Pressures on Refineries & Petrochemical Plants

Factors contributing to accelerated corrosion rates:

• Demanding operating schedules
• Feedstock changes
• Pressure for higher production rates
• Shortened TAR mechanical windows
• Increased durations between TAR’s
• Overloading of equipment
Modern corrosion challenges

Common causes of corrosion and material loss

- Hydrogen induced cracking (HIC)
- Sulphide stress cracking (SSC)
- Stress corrosion cracking (SCC)
- Acidic corrosion
- Base material damage
- Material erosion
- Pitting
Modern corrosion challenges
Compromising asset integrity

- Unplanned shutdowns
- Higher volume of maintenance activities and related costs
- Possible safety incidents
- Long term reliability compromised
- Disruption to production – loss of revenue
Modern corrosion challenges

Upgrades and protective measures

If corrosion allowances are at a critical levels:

- Corrective actions must now be considered
- Repair procedures/processes to reinstate material thickness to the nominal thickness
- Evaluation of the possibility of future corrosion
- Upgrade in materials to protect against further corrosion
- Mechanical windows available for this work scope
During your shutdown we can mobilize our specialist teams for specific repairs and corrosion protection projects; alternatively we can integrate the requirement within our wider scope of services including internals maintenance or revamping

- Seamless interface with internals work. full shutdown scope.
- Removal of internals.
- Modification of attachments
- Fully automated weld overlay process with multiple machines.
- Multiple types of weld Alloy materials can be applied.
- Alloy 625, SS317L, SS309L, and more....
- Supply of mass transfer equipment.
- Installation of internals
Modern corrosion challenges

Corrosion resistant alloys

The following are some of the common CRA’s which can be applied onsite using weld overlay processes and satisfying the requirements outlined in standards such as ASME and NACE.

- **SS 316/317L**
- **22 Cr Duplex**
- **25 Cr Duplex**
- **N08825 – Alloy 825**
- **N06625 – Alloy 625**
- **N10276 – C-276**
- **Monel**

<table>
<thead>
<tr>
<th>Alloy (UNS No.)</th>
<th>Cr</th>
<th>Ni</th>
<th>Mo</th>
<th>Fe</th>
<th>Mn</th>
<th>C</th>
<th>N</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Cr (S42000)</td>
<td>13</td>
<td>-</td>
<td>-</td>
<td>Bal.</td>
<td>0.8</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S13Cr (typical ranges)</td>
<td>11-13</td>
<td>1-6</td>
<td>1-2</td>
<td>Bal.</td>
<td>0.2-0.5</td>
<td>0.025</td>
<td>-</td>
<td>0.2-0.2 Cu, Ti trace</td>
</tr>
<tr>
<td>316L (S31603)</td>
<td>17</td>
<td>12</td>
<td>2.5</td>
<td>Bal.</td>
<td>1</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22 Cr duplex(*)</td>
<td>22</td>
<td>5</td>
<td>3</td>
<td>Bal.</td>
<td>1</td>
<td>0.02</td>
<td>0.15</td>
<td>-</td>
</tr>
<tr>
<td>25 Cr duplex(*)</td>
<td>25</td>
<td>7</td>
<td>4</td>
<td>Bal.</td>
<td>1</td>
<td>0.02</td>
<td>0.28</td>
<td>-</td>
</tr>
<tr>
<td>28 (N08028)</td>
<td>27</td>
<td>31</td>
<td>3.5</td>
<td>Bal.</td>
<td>1</td>
<td>0.01</td>
<td>-</td>
<td>1.0 Cu</td>
</tr>
<tr>
<td>825 (N08825)</td>
<td>22</td>
<td>42</td>
<td>3</td>
<td>Bal.</td>
<td>0.5</td>
<td>0.03</td>
<td>-</td>
<td>0.9 Ti, 2 Cu</td>
</tr>
<tr>
<td>2550 (N06975)</td>
<td>25</td>
<td>50</td>
<td>6</td>
<td>Bal.</td>
<td>0.5</td>
<td>0.03</td>
<td>-</td>
<td>1.2 Ti</td>
</tr>
<tr>
<td>625 (N06625)</td>
<td>22</td>
<td>Bal.</td>
<td>9</td>
<td>2</td>
<td>0.2</td>
<td>0.05</td>
<td>-</td>
<td>3.5 Nb</td>
</tr>
<tr>
<td>C-276 (N10276)</td>
<td>15.5</td>
<td>Bal.</td>
<td>16</td>
<td>6</td>
<td>0.5</td>
<td>0.01</td>
<td>-</td>
<td>3.5 W</td>
</tr>
</tbody>
</table>

* There are a variety of 22 Cr and 25 Cr duplex stainless steels with different UNS numbers.
Application of weld overlay

Weld overlay processes and procedures

- CRA’s can be applied to large areas of the vessel walls
- WPS/PQR’s developed in accordance to the requirements of standards and codes such as ASME 9 and NACE TM0177-2016
- Bespoke procedure can be developed
- Work can be executed during normal mechanical windows
- No limitation on the selection of alloys
- Multiple machines can be applied
Application of weld overlay

Weld overlay processes and procedures

- Consistently high weld quality
- Faster production rates
- Hostile environments - HT
- Minimal material dilution
- Overlay thickness > 3mm
- Low heat input @ HAZ
- Minimal base material distortion
Automated weld overlay CladFuse™ technology

Design features

- Designed for reliability in hostile environments
- Suitable for high temperatures
- Specifically for confined spaces
- Electronics located outside the confined space
- Complete PLC Controls
- WPS/PQR data programmed
- Minimal operator input
- Delivering consistent quality on multiple machines
Automated weld overlay CladFuse™ technology

PLC controls

- WPS/PQR data inputted into PLC system
- Multiple machines operating on the same parameters
- Faster process leading to shorter downtimes
- Delivering consistently higher quality with reliable productivity
Automated weld overlay CladFuse™ technology

Design features
Automated weld overlay CladFuse™ technology

Benefits

- Safely
- On Schedule
- High Quality
Protect
- Critical Failures
- Unplanned Shutdowns

Reduce
- Down time
- Maintenance Costs

Improve
- Asset Lifespan
- Revenue Streams
Case study

Customer: Refinery, Spain
Services:
- Vacuum column, ID=9.150m
- Atmospheric column, ID=7.165m
- Fractionator, ID=3.688m
Scope:
- Supply of new tower internals for debottlenecking
- Dismantling of existing equipment (trays and packings)
- Skim-gouging and surface preparation
- Weld overlay of columns walls
- Installation of new equipment (packings and associated internals)
Case study

Time: Within regular refinery shut down, 25 days

Weld overlay took 2 weeks and was within time schedule also including additional scope generated during shut down

Cladded area: 110m² in vacuum and atmospheric columns, local cladding of removed support rings

Sulzer supply: Weld overlay
Dismantling/installation
Hardware supply (column internals)
Further discussions and clarification on technical requirements:
Thank You